Experimental and modeling study of CO2 separation from three components gas mixtures with poly(ethylene oxide-co-epichlorhydrin) membranes

M. Metaiche, J. Sanchez, A. Sirat, C. Charmette, B. Sala


In this work we studied the possibility of the CO2 separation from three components gas mixture with poly(ethylene oxide-co-epichlorhydrin) membranes. Experimental results showed that the temperature increasing enhance the permeability and allows decreasing the separation factor. The CO2 permeability increases four times when the temperature enhances from 298 °K to 325 °K. Modeling work has been carried out considering spiral wound modules and taking into account the pressure drop and hydrodynamic behavior. Different configurations with various modules in series and in parallel and with recycles have been considered for this process. We observed that at 325 °K, the highest temperature considered the number of pressure tubes necessary for the separation was lower than for 298 °K but need more stages and steps.

Full Text:



Achalpurkar, M.P.; Kharul, U.K.; Lohokare, H.R.; Karadkar, P.B. Gas permeation in amine functionalized silicon rubber membranes, Separation and Purification Technology 57 (2007) 304–313.

Bai, H., Ho.; W. S.W. New Carbon Dioxide-Selective Membranes Based on Sulfonated Polybenzimidazole (SPBI) Copolymer Matrix for Fuel Cell Applications, Ind. Eng. Chem. Res. 2009, 48, 2344–2354.

Baker, R.W. Membrane technology and applications, Copyright 2004 John Wiley &Sons, Ltd. ISBN: 0-470-85445-6, p.538 (2004).

Bara, J.E.; Kaminski, A.K.; Noble, R.D.; Gin, D.L. Influence of nanostructure on light gas separations in cross-linked lyotropic liquid crystal membranes, J. Membr. Sci. 288 (2007) 13–19.

Bhide, B.D.; Stern, S.A. A new evaluation of membrane processes for the oxygen-enrichment of air, Identification of optimum operating conditions and process configuration, J. Membr. Sci. 62 (1991) 13.

Bird, R.B.; Stewart, W.E.; Lightfoot, E.N. Transport phenomena, 2nd Ed., Wiley, New York (2002).

Budd, P.M.; Msayib, K.J.; Tattershall, C.E.; Ghanem, B.S.; Reynolds, K.J.; McKeown, N.B.; Fritsch, D. Gas separation membranes from polymers of intrinsic microporosity, J. Membr. Sci. 251 (2005) 263–269.

Car, A.; Stropnik, C.; Yave, W.; Peinemann, K-V. Pebax®/polyethylene glycol blend thin film composite membranes for CO2 separation: Performance with mixed gases, Separation and Purification Technology 62 (2008-1) 110–117.

Car, A.; Stropnik, C.; Yave, W.; Peinemann, K-V. PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation, J. Membr. Sci. 307 (2008-2) 88–95.

Charmette, C.; Sanchez, J.; Gramain, Ph. and Rudatsikira, A. Gas transport properties of poly(ethylene oxide-co-epichlorohydrin) membranes, J. Membr. Sci. 230 (2004) 161-169.

Carlier, M. Hydraulique Générale et appliquée, Eyrolles, Paris (1980).

Schlichting, H. Boundary-layer theory, McGraw-Hill, 6th edition (1968).

Cecopieri-Gomez, M.L.; Palacios-Alquisira, J.; Domınguez, J.M. On the limits of gas separation in CO2/CH4, N2/CH4 and CO2/N2 binary mixtures using polyimide membranes, J. Membr. Sci. 293 (2007) 53–65.

Chemical Rubber Company (CRC). CRC Handbook of Chemistry and Physics. Weast, Robert C., editor. 65th edition. CRC Press, Inc. Boca Raton, Florida. USA (1984).

Christophe, Charmette; Jose, Sanchez; Philippe, Gramain; Nathalie, Masquelez. Structural characterization of poly(ethylene oxide-co-epichlorohydrin) membranes and relation with gas permeation properties, J. Membr. Sci. 344(1–2) (2009) 275-280.

Crane Company. Flow of fluids through valves, fittings, and pipe ‘Technical Paper No. 410 (TP 410)’ (1988).

Dandekar, A.Y. Petroleum Reservoir Rock And Fluid properties, CRC Press Inc, Edition, p.488 (2006).

De Sales, J.A.; Patrıcio, P.S.O.; Machado, J.C.; Silva, G.G.; Windmoller, D. Systematic investigation of the effects of temperature and pressure on gas transport through polyurethane/poly(methylmethacrylate) phase-separated blends, J. Membr. Sci. 310 (2008) 129–140.

De Carolis, J.; Adham, S.; Kumar, M.; Pearce, B.; Wasserman, L. Integrity and performance evaluation of new generation desalting membranes during municipal wastewater reclamation, WEFTEC® (2005).

Gramain, P.; Sanchez, J. Membranes pour la séparation sélective de gaz, French patent FR 0011811, sept. 15, 2000.

Hao, J.; Rice, P.A.; Stern, S.A. Upgrading low-quality natural gas with H2S- and CO2- selective polymer membranes, Part II. Process design, economics, and sensitivity study of membrane stages with recycle streams, J. Membr. Sci. 320 (2008) 108–122.

Hu, Q.; Marand, E.; Dhingra, S.; Fritsch, D.; Wen, J.; Wilkes, G. Poly(amide-imide)/TiO2 nano-composite gas separation membranes" Fabrication and characterization, J. Membr. Sci. 135 (1997) 65-79.

Illing, G.; Hellgardt, K.; Schonert, M.; Wakeman, R.J.; Jungbauer, A. Towards ultrathin polyaniline films for gas separation, J. Membr. Sci. 253 (2005) 199–208.

Kawakami, M.; Iwanaga, H.; Yamashita, Y.; Yamasaki, M.; Iwamoto, M.; Kagawa, S. Enhancement of carbon dioxide permselectivity of immobilized liquid polyethylene glycol membrane by addition of metal salts, Nihon Kagaku Kaishi 6 (1983) 847.

Kawakami, M.; Iwanaga, H.; Hara, Y.; Iwamoto, M.; Kagawa, S. Gas permeabilities of cellulose nitrate/poly(ethylene glycol) blend membranes, J. Appl. Polym. Sci. 27 (1982) 2387.

Kim, J. H.; Ha, S. Y.; Nam, S.Y.; Rim, J.W.; Paek, K. H.; Lee, Y. M. Selective permeation of CO2 through pore-filled polyacrylonitrile membrane with poly(ethylene glycol), J. Membr. Sci. 186 (2001-1) 94.

Kim, J. H.; Ha, S. Y.; Lee, Y. M. Gas permeation of poly(amide-6-b-ethylene oxide) copolymer, J. Membr. Sci. 190 (2001-2) 179.

Li, F.; Meindersma, W.; Haan, A.B.; de Reith, T. Optimization of commercial net spacers in spiral wound membrane modules, J. Membr. Sci. 208 (2002) 289–302.

Lie, J.A.; Vassbotn, T.; Hagg, M.; Grainger, D.; Kim, T.; Mejdell, T. Optimization of a membrane process for CO2 capture in the steelmaking industry, International Journal of Greenhouse Gas Control 1(2007) 309–317.

Li, J.; Wang, S.; Nakai, K.; Nakagawa, T.; Mau, A. Effect of polyethylene glycol (PEG) on gas permeabilities and permselectivities in its cellulose acetate (CA) membranes, J. Membr. Sci. 138 (1998) 143.

Lin, H.; Freeman, B.D. as solubility, diffusivity and permeability in poly(ethylene oxide), J. Membr. Sci. 239 (2004) 105–117.

Metaiche, M. and Sanchez, Marcano, J. Theoretical Considerations of Pressure Drop and Mass Transfer of Gas Flow in Spiral Wound Membrane Modules, International Journal of Membrane Science and Technology 2016, 3, 12-21.

Okamoto, K.; Fuji, M.; Okamyo, S.; Suzuki, H.; Tanaka, K.; Kita, H. Gas permeation properties of poly(ether imide) segmented copolymers, Macromolecules 28 (1995) 6950.

Orme, C.J.; Harrup, M.K.; Luther, T.A.; Lash, R.P.; Houston, K.S.; Weinkauf, D.H.; Stewart, F.F. Characterization of gas transport in selected rubbery amorphous polyphosphazene membranes, J. Membr. Sci. 186 (2001) 249–256.

Park, H.B. and Lee, Y.M. Fabrication and characterization of nanoporous carbon/silica membranes, Adv. Mater. 17, 477 (2005).

Peter, J.; Khalyavina, A.; Kríz, J.; Bleha M. Synthesis and gas transport properties of ODPA–TAP–ODA hyperbranched polyimides with various comonomer ratios, European Polymer Journal 45 (2009) 1716–1727.

Porter, M.C. Handbook of industrial membrane technology, Reprint Edition, Westwood (1988).

Qi, R.; Henson, M.A. Membrane system design for multicomponent gas mixtures via mixed-integer nonlinear programming, Computers and Chemical Engineering 24 (2000) 2719–2737.

Qi, R.; Henson M.A. Optimal design of spiral-wound membrane networks for gas separations, J. Membr. Sci. 148 (1998) 71-89.

Qipeng, G.; Hechang, X.; Dezhu, M. Effect of temperature on gas permeation of polymer blends. I. Poly(ethylene oxide)/copolymer polyurethane, J. Appl. Polym. Sci. 39 (1990) 2321.

Rautenbach, R.; Welsch, K. Treatment of landfill gas by gas permeation – pilot plant results and comparison to alternatives, Desalination 90 (1993) 193.

Richards, J. J.; Danquah, M. K.; Kalakkunnath, S.; Kalika, D. S.; Kusuma, V. A.; Matteucci, S. T.; Freeman, B. D. Relation between structure and gas transport properties of polyethylene oxide networks based on crosslinked bisphenol A ethoxylatediacrylate, Chemical Engineering Science 64 (2009) 4707-4718 .

Robeson, L.M. Correlation of separation factor versus permeability for polymeric membranes, J. Membr. Sci. 62 (1991) 165.

Robeson, L.M.; Freeman, B.D.; Paul, D.R.; Rowe, B.W. An Empirical Correlation of Gas Permeability and Permselectivity in Polymers and its Theoretical Basis, J. Membr. Sci. 341 (2009) 178-185.

Robeson, L.M. The upper bound revisited, J. Membr. Sci. 320 (2008) 390-400.

Rojey, A. ; Durand, B. ; Jaffret, C. ; Jullian, S. ; Valais, M. Le gaz naturel: production traitement transport, Edition Technip, p.430 (1973).

Rooney, M.L. Active food packaging, 1st ed., Chapman and Hall, 111 (1995).

Sanchez, J.; Charmette, C.; Gramain, P. Poly(ethylene oxide-co-epichlorohydrin) membranes for carbon dioxide separation, J. Membr. Sci. 205 (2002) 259.

Savoca, A. C.; Surnamer, A. D. and Tien, C. Gas Transport in Poly(sily1propynes) : The Chemical Structure Point of View, Macromolecules 1993,26, 6211-6216.

Schell, W.J. Commercial applications for gas permeation membrane systems, J. Membr. Sci. 22 (1985) 217.

Schwinge, J.; Neal, P.R.; Wiley, D.E.; Fletcher, D.F.; Fane, A.G. Spiral wound modules and spacers Review and analysis, J. Membr. Sci. 242 (2004) 129–153.

Shao, L.; Samseth, J.; Hagg, M.B. Crosslinking and stabilization of high fractional free volume polymers for gas separation, international journal of greenhouse gas control (2008) 492–501.

Shida, Y.; Sakaguchi, T.; Shiotsuki, M.; Sanda, F.; Freeman, B.D. and Masuda T. Synthesis and Properties of Membranes of Poly(diphenylacetylenes) Having Fluorines and Hydroxyl Groups, Macromolecules 2006, 39, 569-574.

Song, I.; Ahn, H.; Jeon, H.; Jeong, H.; Lee, Y.; Choi, S.; Kim, J.; Lee, S. Optimal design of multiple stage membrane process for carbon dioxide separation, Desalination 234 (2008) 307–315.

Uppaluri, R.V.S.; Smith, R.; Linke, P.; Kokossis, A. C. On the simultaneous optimization of pressure and layout for gas permeation membrane systems, J. Membr. Sci. 280 (2006) 832–848.

USEPA (United States Environmental Protection Agency). Membrane filtration guidance manual (2005).

Wang, L.; Cao, Y.; Zhou, M.; Zhou, S.J.; Yuan, Q. Novel copolyimide membranes for gas separation, J. Membr. Sci. 3005 (2007) 338.

Wilfredo, Yave; Anja, Car; Klaus-Viktor, Peinemann; Muhammed, Q. Shaikh; Klaus, Rätzke; Franz, Faupel. Gas permeability and free volume in poly(amide-b-ethylene oxide)/polyethylene glycol blend membranes, J. Membr. Sci. 339 (1-2) (2009) 177-183.

Wilfredo, Yave; Anja, Car; Klaus-Viktor, Peinemann. Nanostructured membrane material designed for carbon dioxide separation, J. Membr. Sci. 350 (1-2) (2010) 124-129.

Yang, L.; Fang, J.; Meichin, N.; Tanaka, K.; Kita, H.; Okamoto, K. Gas permeation properties of thianthrene-5,5,10, 10-tetraoxide-containing polyimides, Polymer 42 (2001) 2021–2029.

Yave, W.; Car, A.; Funari, S. S.; Nunes, S. P. and Peinemann, K-V. CO2-Philic Polymer Membrane with Extremely High Separation Performance, Macromolecules 2010, 43,326–333.

Yoshino, M.; Kita, H.; Okamoto, K.; Tabuchi, M.; Sakai, T. CO2/N2 Gas Separation Properties of

Poly(Ethylene Oxide) Containing Polymer Membranes, Trans Mat. Res. Soc. Jap. 27 (2002) 419.

Yoshino, M.; Ito, K.; Kita, H.; Okamoto, K. Effects of Hard-Segment Polymers on CO2/N2 Gas-Separation Properties of Poly(ethylene oxide)-Segmented Copolymers, J. Polym. Sci. Part B: Polym. Phys. 38 (2000) 1707.

Zhao, H-Y.; Cao, Y-M.; Ding, X-L.; Zhou, M.Q.; Yuan, Q. Poly(N,N-dimethylaminoethyl methacrylate)–poly(ethylene oxide) copolymer membranes for selective separation of CO2, J. Membr. Sci. 310 (2008) 365–373.

Zhao, L.; Riensche, E.; Blum, L.; Stolten, D. Multi-stage gas separation membrane processes used in post-combustion capture: Energetic and economic analyses, J. Membr. Sci. 2010, 359(1): 160-172.


  • There are currently no refbacks.