Assessment of olive mill wastewaters bioconversion potential into biotechnological and health interest microbial biomass

S. Dermeche, F. Moulti-Mati


Abstract: Olive mill by-products which are characterized by powerful antioxidant and recalcitrant compounds to biodegradation represent an important environmental problem. They are produced in huge quantities in short periods of time. Therefore, finding a suitable biovalorization strategy to exploit these by-products is a great interest. In this context, the current study aimed to olive mill wastewaters (OMWW) bioconversion into valuable microbial biomass, oleaginous yeasts, as well as healthy probiotic bacteria as enrichment substrat. This study also describes and discusses the antimicrobial potential of OMWW. Yeasts and bacterial growth was monitored by plating on malt extract agar (MEA) and Man Rogosa and Sharpe Agar (MRSA) agar respectively. The antimicrobial properties of ethyl acetate polyphenolic extracts from fermented and unfermented OMWW were assessed using the disc diffusion method. The experiments trials reveals that the raw OMWW exert a strong inhibition against oleaginous yeasts and probiotic bacteria while substrate dilution or enrichment led to cell growth promoting and polyphenol removal. Moreover, polyphenolic extracts provide a wide antimicrobial spectrum potential against pathogenic and food spoiling bacteria. Thus, OMWW could be considered as a beneficial and valuable nutritional source for microbial biomass production and mainly those are of biotechnological and health interest.

Full Text:



COI (Conseil oléicole international). Huiles d'olive, Production. Newsletter – marché oléicole 121 (2017) 1-5.

Janakat, S.; Al-nabulsi, A.A.R.; Allehdan, S.; Olaimat, A.N.; Alan, H.R. Antimicrobial activity of amurca (olive oil lees) extract against selected foodborne pathogens. Food Science and Technology 35 (2015) 259-265.

Dermeche, S.; Nadour, M.; Larroche, C.; Moulti-Mati, F.; Michaud, P. Olive mill wastes biochemical characterizations and valorization strategies. Process Biochemistry 48 (2013)1532-1552.

Nadour, M.; Laroche, C.; Pierre, G.; Delattre, C.; Mati, F.; Michaud, P. Structural characterization and biological activities of polysaccharides from olive mill wastewater. Applied Biochemistry and Biotechnology 177 (2015) 431-45.

Galanakis, C.M.; Kotsiou, K. Recovery of Bioactive Compounds from Olive Mill Waste. Book chapter in Olive Mill Waste Recent Advances for Sustainable Management (2017) 205-229.

Komnitsas, K.; Modis, K.; Doula, M.; Kavvadias, V.; Sideri, D.; Zaharaki, D. Geostatistical estimation of risk for soil and water in the vicinity of olive mill wastewater disposal sites. Desalination and Water Treatment 57 (2016) 2982-2995.

McNamara, C.J.; Anastasiou C.C.; O’Flaherty, V.; Mitchell, R. Bioremediation of olive mill wastewater. International Journal of Biodeterioration and Biodegradation 61 (2008) 127-134.

Daassi, D.; Lozano-Sanchez, J.; Borras, I.; Lassaad, B.; Woodward, S.; Mechichi, T. Olive oil mill wastewaters: phenolic content characterization during degradation by Coriolopsis gallica. Chemosphere 113 (2013) 62-70.

Rodriguez, M. M.; Pérez, J.; Ramos-Cormenzana, A.; Martinez, J. Effect of extracts obtained from olive oil mill waste on Bacillus megaterium ATCC 33085. Journal of Applied Bacteriology 64 (1988) 219-222.

Capasso, R.; Cristinzio, G.; Evidente, A.; Scognamiglio, F. Isolation, spectroscopy and selective phytotoxic effects of polyphenols from vegetable wastewaters. Phytochemistry 31 (1992) 4125-4128

Marsilio, V.; Campestre C.; Lanza, B. Phenolic compounds change during California-style ripe olive processing. Food Chemistry 74 (2001) 55-60.

Galanakis, C.M.; Tornberg, E.; Gekas, V.A study of the recovery of the dietary fibres from olive mill wastewater and the gelling ability of the soluble fibre fraction. LWT-Food Science and Technology 43 (2010) 1009-1017.

Galanakis, C. M.; Tornberg, E.; Gekas, V. Recovery and preservation of phenols from olive waste in ethanolic extracts. Journal of Chemical Technology and Biotechnology 85 (2010) 1148-1155.

Galanakis, C.M.; Tornberg, E.; Gekas, V. Clarification of high-added value products from olive mill wastewater. Journal of Food Engineering 99 (2010) 190-197.

Galanakis, C.M. Olive fruit and dietary fibers: components, recovery and applications. Trends in Food Science and Technology 22 (2011) 175-184.

Senani-Oularbi, N.; Riba, A.; Moulti-Mati, F. Inhibition of Aspergillus flavus growth and aflatoxin B1 production by olive mill wastewater. Bioscience Research 15 (2018) 369-380.

Soccol, C.R.; de Souza Vandenberghe, L.P.; Spier, M. R.; Pedroni Medeiros, A.B.; Yamaguishi, C.T.; Lindner, J. D. D.; Pandey, A.; Thomaz-Soccol, V. The Potential of Probiotics: A Review. Food Technology and Biotechnology 48 (2010) 413-434.

Fontanille, P.; Kumar, V.; Christophe, G.; Nouaille, R.; Larroche, C. Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica. Bioresource Technology 114 (2012) 443-449.

Ledesma-Amaro, R.; Nicaud, J.M. Metabolic Engineering for Expanding the Substrate Range of Yarrowia lipolytica. Trends in Biotechnology 34 (2016) 798-809.

Gonçalves, F.A.G.; Colen, G.; Takahashi, J.A. Yarrowia lipolytica and Its Multiple Applications in the Biotechnological Industry. Review Article. The Scientific World Journal 2014 (2014) 1-14.

Béligon, V.; Poughon, L.; Christophe, G.; Lebert, A.; Larroche, C.; Fontanille, P. Improvement and modeling of culture parameters to enhance biomass and lipid production by the oleaginous yeast Cryptococcus curvatus grown on acetate. Bioresource Technology 192 (2015) 582-591.

Beligon, V. Valorisation d'acides gras volatils issus de fermentation anaerobie par la production de lipides microbiens, precurseurs de biodiesel. Thèse : Alimentation et Nutrition. Universite Blaise Pascal - Clermont-Ferrand II, (2016) France.

Ratledge, C. Regulation of lipid accumulation in oleaginous micro-organisms. Biochemical Society Transaction 30 (2002) 1047–1050.

Papanikolaou, S.; Aggelis, G. Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresource Technology 82 (2002) 43-49.

Beopoulos, A.; Cescut, J.; Haddouche, R.; Uribelarrea, J. L.; Molina-Jouve, C.; Nicaud, J.M. Yarrowia lipolytica as a model for bio-oil production. Progress in Lipid Research 48 (2009) 375-387.

Beopoulos, A.; Chardot, T.; Nicaud, J.M. Yarrowia lipolytica: A model and a tool to understand the mechanisms implicated in lipid accumulation. Biochimie, Lipids for the future from agro-resources to human health. Biochimie 91 (2009) 692-696.

Dourou, M.; Kancelista, A.; Juszczyk, P.; Sarris, D.; Bellou, S.; Triantaphyllidou, I.; Rywinska, A.; Papanikolaou, S.; Agglis, G. Bioconversion of olive millwastewater into high-added value products. Journal of Cleaner Production 139 (2016) 957-969.

Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R. M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteau reagent. Methods in Enzymology 299 (1999) 152-178.

Yousuf, A.; Sannino, F.; Addorisio, V.; Pirozzi, D.J. Microbial conversion of olive oil mill wastewaters into lipids suitable for Biodiesel Production. Journal of Agricultural and Food Chemistry 58 (2010) 8630-8635.

Yin, H.C.; Dong, X.L.L.; Wang, Z.G.; Xu Q.Q.; Liu X.L.; Yan, H. Economic production of probiotics from kitchen waste. Food Science and Biotechnology 22 (2013), 59-63.

Zirehpour, A.; Rahimpour, A.; Jahanshahi, M.; Peyravi, M. Mixed matrix membrane application for olive oil wastewater treatment: process optimization based on Taguchi design method. Journal of Environmental Management 132 (2014) 113-120.

Larif, M.; Ouhssine, M.; Soulaymani, A.E.; Elmidaoui, A. Potential effluent oil mills and antibacterial activity polyphenols against some pathogenic strains. Research on Chemical Intermediates 41 (2013) 1213-1225.

Senani-Oularbi, N.; Moulti-Mati, F.; Letteron, P.; Ducroc, R.; El benna, J.; Marie, J.C. Hypoglycemic effect of olive mill wastewater in mice involves the sglt-1 transporter. International Journal of Pharmacy and Pharmaceutical Sciences 9 (2016) 73-78.

Ramos, P.; Santosc, S.A.O.; Guerra, Â.R.; Guerreiro, O.; Felício, L.; Jerónimo, E.; Silvestre, A.J.D.; Netoc, C.P.; Duarte, M. Valorization of olive mill residues: Antioxidant and breast cancer antiproliferative activities of hydroxytyrosol-rich extracts derived from olive oil by-products. Industrial Crops Products 46 (2013) 359-368.

Giavasis, I.; Tsante, E.; Goutsidis, P.; Papatheodorou, K.; Petrotos, K. Stimulatory effect of novel polyphenol-based supplements from olive mill waste on the growth and acid production of lactic acid bacteria. In Microbes in Applied Research: Current Advances and Challenges (2012) 308-3012.

Tsangalis, D.; Ashton, J. F.; McGill, A.E.J.; Shah, N.P. Enzymic transformation of isoflavone phytoestrogens in soymilk by b-glucosidase-producing Bifidobacteria. Journal of Food Science 67 (2002) 3104-3113.

Aura, A. M. Microbial metabolism of dietary phenolic compounds in the colon. Phytochemistry Reviews 7 (2008) 407-429.

Donkor, O.N.; and Shah, N.P. Production of b-glucosidase and hydrolysis of isoflavone phytoestrogens by Lactobacillus acidophilus, Bifidobacterium lactis, and Lactobacillus casei in soymilk. Journal of Food Science 73 (2008) 15-20.

Uskova, M.A.; Kravchenko, L.V.; Avrenjeva, L.I.; Tutelyan, V.A. Effect of Lactobacillus casei 114001 probiotic on bioactivity of rutin. Bulletin of Experimental Biology and Medicine 149 (2010) 578-582.

Gerasopoulos, K.; Stagos, D.; Petrotos, K.; Kokkas, S.; Kantas, D.; Goulas, P.; Kouretas, D. Feed supplemented with polyphenolic byproduct from olive mill wastewater processing improves the redox status in blood and tissues of piglets. Food and Chemical Toxicology 86 (2015) 319-327.

Kachouri, F.; Ksontini, H.; Kraiem, M.; Setti, K.; Mechmeche, M.; Hamdi, M. Involvement of antioxidant activity of Lactobacillus plantarum on functional properties of olive phenolic compounds. Journal of Food Science and Technology 52 (2016) 7924-7933.

Lopez De Lacey, A.M.; Perez-Santin, E.; Lopez-Caballero, M.E.; Montero, P. Survival and metabolic activity of probiotic bacteria in green tea. LWT- Food Science and Technology 3 (2013) 1-9.

Lara-villoslada, F.; Olivares, M.; Sierra, S.; Rodriguez, J.M.; Boza, J.; Xaus, J. Beneficial effects of probiotic bacteria isolated from breast milk. British Journal of Nutrition 98 (2007) 96-100.

Ayed, L. and Hamdi, M. Fermentative decolorization of olive mill wastewater by Lactobacillus Plantarum. Process Biochemistry 39 (2003) 59-65.

Aouidi, F.; Gannoun, H.; Ben Othman, N.; Ayed, L.; Hamdi, M. Improvement of fermentative decolorization of olive mill wastewater by Lactobacillus paracasei by cheese whey’s addition. Process Biochemistry 44 (2009) 597-601.

Avila, M.; Hidalgo, M.; Sánchez-moreno, C.; Pelaez, C.; Requena, T.; Pascual-Teresa, S.D. Bioconversion of anthocyanin glycosides by Bifidobacteria and Lactobacillus. Food Research International 42 (2009) 1453-1461.

Cueva, C.; Moreno-arribas, M.V.; Martín-Álvarez, P. J.; Bills, G.; Vicente, M.F.; Basilio, A.; López, C.R.; Requena, T.; Rodríguez J.M.; Bartolom, B. Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Research in Microbiology 161 (2010) 372-382.

Boskou, D. Sources of natural phenolic antioxidants. Trends in Food Science and Technology 17 (2006) 505-512.

Obied, H.K.; Bedgood, D.R.J.; Prenzler, P.D.; Robards, K. Bioscreening of Australian olive mill waste extracts: biophenol content, antioxidant, antimicrobial and molluscicidal activities. Food and Chemical Toxicology 45 (2007) 1238-1248.

Yangui, T.; Sayadi, S.; Gargoubi, A.; Dhouib, A. Fungicidal effect of hydroxytyrosol rich preparations from olive mill wastewater against Verticillium dahliae. Crop Protection 29 (2010) 1208-1213.

Carraro, L.; Fasolato, L.; Montemurro, F.; Martino, M. E.; Balzan, S.; Servili, M.; Novelli, E.; Cardazzo, B. Polyphenols from olive mill waste affect biofilm formation and motility in Escherichia coli K-12. Microbial Biotechnology 7 (2014) 265-275.

Abu-Lafi, S.; Al-Natsheh M. S.; Yaghmoor, R.; Al-Rimawi, F. Enrichment of Phenolic Compounds from Olive Mill Wastewater and In Vitro Evaluation of Their Antimicrobial Activities. Evidence-Based Complementary and Alternative medicine 2017 (2017) 1-9.

Lagrouh, F.; Dakka, N.; Bakri, Y. The antifungal activity of Moroccan plants and the mechanism of action of secondary metabolites from plants. Journal de Mycology Medical 27 (2017) 303-311.

Aziz, N.H.; Farag, S.E.; Mousa, L.A.; Abo, M.A. Comparative antibacterial and antifungal effects of some phenolic compounds. Microbios. 93(1998) 43-54.

Tafesh, A.; Najami, N.; Jadoun, J.; Halahlih, F.; Riepl, H.; Azaizeh, H. Synergistic antibacterial effects of polyphenolic compounds from olive mill wastewater. Evidence-Based Complementary Alternative Medicine 2011 (2011) 1-9.

Capasso, R.; Evidente, A.; Schivo, L.; Orru, G.; Marcialis, M.A.; Cristinzio, G. Antibacterial polyphenols from olive oil mill waste waters. Journal of Applied Bacteriololgy 79 (1995) 393-398.

Özdemir, Z. Growth inhibition of Clavibacter Michiganensis subsp. Michiganensis and Pseudomonas syringae pv. tomato by olive mill wastewaters and citric acid. Journal of Plant Pathology 91 (2009) 221-224.

Medina, E.; Antonio, C.D.; Concepcion, R.; Manuel B. Comparison of the concentrations of phenolic compounds in olive oils and other plant oils: correlation with antimicrobial activity. Journal of Agricultural and Food Chemistry 54 (2006) 4954-61.

Pereira, A. P.; Ferreira, I.C.; Marcelino, F.; Valentão, P.; Andrade, P.B.; Seabra, R.; Estevinho, L.; Bento, A.; Pereira, J. A. Phenolic compounds and antimicrobial activity of olive (Olea europaea L. Cv. Cobrançosa) Leaves. Molecules 12 (2007) 1153-62.

Esmail, A.; Chahboun, N.; Mennane, Z.; Amiyare, R.; Abed, H.; Barrahi, M.; Qebibo, A.; Ouhssine, M.; Berny, E. H. Étude de l'activité antimicrobienne des margines issues de Fès Boulman vis à-vis de souches pathogènes. Journal of Material and Environmental Science 6 (2015) 869-876.

Belaqziz, M.; El-Abbassi, A.; Lakhal, E.K.; Agrafioti, E.; Galanakis, C.M. Agronomic application of olive mill wastewater: Effects on maize production and soil properties. Journal of environmental Management 171 (2016) 158-165.

Schneider, H.; Schwiertz, A.; Collins, M.D.; Blaut, M. Anaerobic transformation of quercetin-3-glucoside by bacteria from the human intestinal tract. Archives of Microbiology 171 (1999) 81-91.


  • There are currently no refbacks.