Automatic Voltage Regulator Design Enhancement Taking Into Account Different Operating Conditions and Environment Disturbances

F. Ahcene, H. Bentarzi, A. Ouadi


Abstract: In large power systems as well as in micro-grids, the generation of electrical energy is ensured by the synchronous generators, the enhancement of their dynamic performance during disturbances is increasingly required. This research work aims to maintain the terminal voltage constant starting by a 1.5 k VA synchronous laboratory power machine with salient pole under different operating conditions and environment disturbances. Then, a second generator of 187 MVA with different exciting systems is studied. A voltage regulation is ensured by a well-known controller named Automatic Voltage Regulator (AVR).  In the first method, this AVR is based on a conventional Proportional Integral (PI) controller.  The used optimization method for the controller parameters determination is the Particle Swarm Optimization (PSO) algorithm.  In the second method, the AVR is based on Active Disturbance Rejection Control (ADRC) that allows controlling uncertain systems, where the dynamic is not well defined as in this application. Both methods are tested under different operating conditions. The obtained simulation results are encouraged to validate the use of the ADRC control in such application.

Full Text:



Bendjegh, O.; Ishak Boushaki, S.Bat algorithm for optimal tuning of PID controller in AVR system. International conference on control, Engineering and information technology (2014) 158:170.

Ahcene,F.; Bentarzi, H. Automatic voltage regulator design using particle swarm optimization. International conference on electrical engineering (2020).

Gaiang, Z.L. A particle swarm optimization approach for optimum design of PID controller in AVR system, IEEE Transactions on Energy Conversion 19 (2004) 348:391.

Kim, D.H;. Cho J.H. A biologically inspired intelligent PID controller tuning for AVR systems. International Journal of Control Automatic and Systems 4 (2006) 624:636

Mukherjee V Ghoshal, S.P. Intelligent particle swarm optimized fuzzy PID controller for AVR system. Electric Power System Research 77 (2007) 1689:1698.

Wong, C.C.;Li , S.A Y.; Wang H. Optimal PID controller design for AVR system. Tamkang Journal of Science and Engineering; 12 (2009) 259:270.

Shayeghi, H.; Dadashpour, J. Anarchic Society Optimization Based PID Control of an Automatic Voltage Regulator (AVR) System. Electrical and Electronic Engineering 2 (2012) 199:207.

Hasanien, H. M. Design optimization of PID controller in automatic voltage regulator system using taguchi combined genetic algorithm method. IEEE Systems Journal7 (2013) 825:831.

Han,J. A class of extended state observers for uncertain systems.control and decision 10 (1995) 85:88.

Han,J. From PID to active disturbance rejection control. IEEE Transactions on industrial electronics 56(2009) 900:906.

Ygzaw, A.; Banteyirga. B.; Darsema, M. Generator excitation loss detection on various excitation systems and excitation system failure, ICST 2020 Springer nature swizerland AG. LNICST308(2020) 382 :394.

Wei,Y.; Zheng, Xu. Excitation System Parameters Setting for Power System Planning. Power Engineering Society Summer Meeting, IEEE (2002).

Paszek, S.; Bobon, A.; Berkausen, S.; Majka, L.; Nocon, A.; Pruski, P. Synchronous generator and excitation systems operating in power system», Springer 631(2020) 49:149.

Barakat, A.M. Contribution à l’amélioration de la régulation de tension des générateurs synchrones: nouvelles structures d’excitation associées à des lois de commandes H∞. Poitiers university (2011).

Van Custem, T. Introduction to electric power and energy systems. Montefiore Liège université science appliqués (2019).

Shi, Y.; Eberhart, R. A modified particle swarm optimizer. Proceedings of IEEE World Congress on computational intelligence international conference on evolutionary computation (1998) 69:73.

Ramirez, JM.; Montalvo.; Nuno, CI. Modelling synchronization and implementation of the virtual synchronous generator: a study of its reactive power handling, Springer verlag GmbH germany part of springer nature (2020).

Derrar, A. Résolution du problème d’optimisation H∞ des stabilisateurs PSS robustes par les approches métaheuristiques. Sidi bel abbes university (2016).

Teodor Wisniewski, M. Modélisation non-lieaire des machines synchrones pour l’analyse en régime transitoires et les études de stabilité. Université Paris-Saclay (2018).

Hashemi, F.; Mohammadi, M. Combination of continous action reinforcement learning automata on PSO to design PID controller for AVR system. IJE TRANSACTIONS 28 (2015) 52:59.

Clerc, M.; Kennedy, J. The particle swarm explosion stability and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6 (2002) 58:73.

Cristian, B.; Merkele, D. Swarm Intelligence: Introduction and Applications Natural Computing Series, Springer-Verlag Berlin Heidelberg (2008).

Kennedy, J.; Eberhart, R. Particle swarm optimization. Proc IEEE IntConf Neural Netw 4(1995) 1942:1948.

Carlisle, A.; Dozier, G. An off-The-Shelf PSO. Workshop particle swarm optimization Indianapolis (2001).

Gao,Z.;Huang,Y.; Han,J. An alternative paradigm for control system design. In proceeding of the 40 th IEEE conference on decision and control 5(2001) 4578:4585.

Martini,A.;Leonard,F.; ABBA, G. Modélisation et commande d’un hélicoptère drone soumis à des rafales de vent. 18ème congrés francais de mécanique (2007).

Vincent, D. Commande d’un quadrioptère par rejet de perturbations. Ecole polytechnique de Montréal (2008)

Fliess ,M.; Join, C. Two competing improvement of PID controllers. IST Open science London UK (2017).

Gonzalez, J. Estimation et controle des systems dynamiques à entrée inconnues et energies renouvelables. Centralle Lille (2019).

Wen, T.; Caifen, F. Linear active disturbance rejection control : analyse and tuning via IMC. IEE Transactions on industrial electronics 63 (2016) 2350 :2359.

Mandali, A.; Dong,L.; Morinec, A. Robust controller design for automatic voltage regulation. American control conference Denver 1-3 (2020) 2617:2622.


  • There are currently no refbacks.